Distributed Games for Multi-Agent Systems: Games on Communication Graphs

K. G. Vamvoudakis¹, **D. G. Mikulski**^{2,3}, G. R. Hudas³, F. L. Lewis¹, E. Y. Gu²

27th Army Science Conference Orlando, FL

Thursday, December 2, 2010

Supported by: ARO grant W91NF-05-1-0314 and the U.S. Army National Automotive Center

1 University of Texas-Arlington, Automation

& Robotics Research Institute

2 U.S. Army RDECOM-TARDEC

3 Oakland University, School of Engineering

maintaining the data needed, and including suggestions for reducin	completing and reviewing the colle g this burden, to Washington Head ould be aware that notwithstanding	ction of information. Send commer juarters Services, Directorate for In	its regarding this burden estim formation Operations and Rep	ate or any other aspect orts, 1215 Jefferson Da	existing data sources, gathering and of this collection of information, wis Highway, Suite 1204, Arlington with a collection of information if it
1. REPORT DATE 02 DEC 2010		2. REPORT TYPE N/A		3. DATES COVERED	
4. TITLE AND SUBTITLE Distributed Games for Multi-Agent Systems: Games on Communication Graphs				5a. CONTRACT NUMBER	
				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) K. G. Vamvoudakis; D. G. Mikulski; G. R. Hudas, F. L. Lewis1; E. Y. Gu				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Texas-Arlington, Automation & Robotics Research Institute; U.S. Army RDECOM-TARDEC; Oakland University, School of Engineering				8. PERFORMING ORGANIZATION REPORT NUMBER 21391RC	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA				10. SPONSOR/MONITOR'S ACRONYM(S) TACOM/TARDEC	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S) 21391RC	
12. DISTRIBUTION/AVAI Approved for pub	LABILITY STATEMENT lic release, distribut	tion unlimited			
			ovember 2 Decen	nber 2010 Oı	rlando, Florida, USA,
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF: 17. LIMITATION				18. NUMBER	19a. NAME OF
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT SAR	OF PAGES 31	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

Motivation

- U.S. Army currently wages asymmetric battles against insurgencies
- Enemy is hard to detect
 - Knowledge of local terrain
 - Ability to mix in with the civilian population
- Enemy quickly adapts to Army tactics and strategies

Motivation (cont)

- The needs of Soldiers change in response to new insurgent strategies
- Real-time adaptive team responses to insurgent threats are key to mitigate the risk in uncertain and dynamic battle spaces

Research Objective

- Goal: Develop ways for teams to learn optimal game strategies, even under changing mission requirements and team objectives
- Problem: Centralized formulation of multiagent games is complex and needs global data. Can we decentralize the dynamics in multi-agent games and still achieve optimal performance?

Outline

- Background Information
 - Game Theory for Multi-Agent Systems (MAS)
 - Graph Theory for Communication Graphs
 - Synchronization Control Design Problem
- Cooperative Optimal Control
 - Local Performance Functions for Team Behaviors
 - Distributed Hamilton–Jacobi (HJ) Equation
- Multi-Agent Game Distributed Solution
 - Reinforcement Learning Solution
 - Online Solution using Neural Networks
 - Simulation Results

Background Information

Game Theory for MAS

- MAS comprised of autonomous agents that cooperate to meet a system-level objective
- Game Theory used to model the strategic behavior of MAS
 - Outcomes depend not only an agent's own actions, but also the actions of every other agent
 - Each agent chooses a strategy that independently optimizes his own performance objectives without the knowledge of other agent strategies
- Team decisions normally solved offline
 - Coupled Riccati equations for linear systems
 - Coupled Hamilton–Jacobi equations non–linear systems

Graphs for Communications

- Consider a graph Gr=(V,E) with:
 - Nonempty set of N agents $V = \{v_1, ..., v_N\}$
 - Set of edges $E \subseteq VxV$
 - Connectivity matrix $E = [e_{ij}]$
 - Set of neighbors N_i
 - In degree matrix is denoted as

$$D = [d_i] = [\sum_{j \in N_i} e_{ij}]$$

- Define the graph Laplacian:
- If the graph is strongly connected: no permutation matrix such that:

$$L = D - E$$

$$L = U \begin{bmatrix} * & 0 \\ * & * \end{bmatrix} U^T$$

Synchronization Problem

Consider Nagents on Gr with dynamics

$$\dot{x}_i = Ax_i + B_i u_i, x_i(t) \in \square^n, u_i(t) \in \square^{m_i}, A(t) \in \square^{n \times n}, B(t) \in \square^{m_i \times n}$$

- ► Target node is $x_0(t) \in \square^n$, which satisfies the dynamics: $\dot{x}_0 = Ax_0$
- Synchronization Problem: design local control protocols for all agents in Gr to synch to target node. $x_i(t) \rightarrow x_0(t), \forall i$

Synchronization Problem (cont)

Cooperative team objectives can be described in terms of the *local neighborhood tracking* error (LNTE)

$$\delta_i = \sum_{j \in N_i} e_{ij} (x_i - x_j) + g_i (x_i - x_0)$$

Dynamics of the LNTE

$$\dot{\delta}_i = \sum_{j \in N_i} e_{ij} (\dot{x}_i - \dot{x}_j) + g_i (\dot{x}_i - \dot{x}_0)$$

$$\dot{\delta}_i = A\delta_i + (d_i + g_i)B_i u_i - \sum_{j \in N_i} e_{ij}B_j u_j$$

Cooperative Optimal Control

>>> Multi-Agent Games on Graphs

Local Cost Function for Teams

- Goal: To achieve synchronization while optimizing some performance measures on the agents
- Local Cost Function

$$\begin{split} J_{i}(\delta_{i}(0), u_{i}, u_{-i}) &= \int_{0}^{\infty} (\delta_{i}^{T} Q_{ii} \delta_{i} + u_{i}^{T} R_{ii} u_{i} + \sum_{j \in N_{i}} u_{j}^{T} R_{ij} u_{j}) \ dt \\ Q_{ii} &\geq 0, \ R_{ii} > 0, \ R_{ij} \geq 0 \end{split}$$

Local Value and Hamiltonian

- Let us interpret the control input as policies/strategies
- Local Value Function

$$V_i(\delta_i(t), \delta_{-i}(t)) = \int_t^\infty (\delta_i^T Q_{ii} \delta_i + u_i^T R_{ii} u_i + \sum_{j \in N_i} u_j^T R_{ij} u_j) dt$$

Local Hamiltonian Function

$$H_{i}(\delta_{i}, u_{i}, u_{-i}) = \frac{\partial V_{i}^{T}}{\partial \delta_{i}} \left(A\delta_{i} + (d_{i} + g_{i})B_{i}u_{i} - \sum_{j \in N_{i}} e_{ij}B_{j}u_{j} \right)$$
$$+\delta_{i}^{T}Q_{ii}\delta_{i} + u_{i}^{T}R_{ii}u_{i} + \sum_{j \in N_{i}} u_{j}^{T}R_{ij}u_{j} = 0$$

Local Nash Equilibrium

The control objective of agent i is to find the optimal strategy and smallest value:

$$V_{i}^{*}(\delta_{i}(t), \delta_{-i}(t)) = \min_{u_{i}} \int_{t}^{\infty} (\delta_{i}^{T} Q_{ii} \delta_{i} + u_{i}^{T} R_{ii} u_{i} + \sum_{j \in N_{i}} u_{j}^{T} R_{ij} u_{j}) dt$$

Nash equilibrium solution for a finite N-agent distributed game is an N-tuple of strategies where:

$$J_{i}^{*} \square J_{i} (\mu_{i}^{*}, \mu_{-i}^{*}) \leq J_{i} (\mu_{i}, \mu_{-i}^{*}), i \in N$$

Distributed HJ Equation

• Using the stationarity condition $\partial H_i / \partial u_i = 0$ to find the optimal control:

$$u_{i} = -\frac{1}{2}(d_{i} + g_{i})R_{ii}^{-1}B_{i}^{T} \frac{\partial V_{i}}{\partial \delta_{i}} \equiv -h_{i}(\frac{\partial V_{i}}{\partial \delta_{i}})$$

Substitute into Hamiltonian to get distributed Hamilton-Jacobi (HJ) equation

$$\frac{\partial V_{i}}{\partial \delta_{i}}^{T} \left(A \delta_{i} - \frac{1}{2} (d_{i} + g_{i})^{2} B_{i} R_{ii}^{-1} B_{i}^{T} \frac{\partial V_{i}}{\partial \delta_{i}} + \frac{1}{2} \sum_{j \in N_{i}} e_{ij} (d_{j} + g_{j}) B_{j} R_{jj}^{-1} B_{j}^{T} \frac{\partial V_{j}}{\partial \delta_{j}} \right)$$

$$+ \delta_{i}^{T} Q_{ii} \delta_{i} + \frac{1}{4} (d_{i} + g_{i})^{2} \frac{\partial V_{i}}{\partial \delta_{i}}^{T} B_{i} R_{ii}^{-1} B_{i}^{T} \frac{\partial V_{i}}{\partial \delta_{i}}$$

$$+ \frac{1}{4} \sum_{j \in N_{i}} (d_{j} + g_{j})^{2} \frac{\partial V_{j}}{\partial \delta_{j}}^{T} B_{j} R_{jj}^{-1} R_{ij} R_{jj}^{-1} B_{j}^{T} \frac{\partial V_{j}}{\partial \delta_{j}} = 0, i \in N$$

$$= N$$

$$= N$$

$$= N$$

15

Distributed HJ Equation (cont)

- There is one coupled HJ equation corresponding to each agent.
- Therefore, a solution to this <u>multi-agent game</u> problem requires a solution to N coupled partial differential equations.
- Next, we show how to solve this online in a distributed way
 - Each agent requires only information from neighbors
 - Use techniques from reinforcement learning

Distributed Solution of the Multi-Agent Game

>>> Using Reinforcement Learning

Reinforcement Learning (RL)

- RL is concerned with how to methodically modify the actions of an agent based on observed responses from its environment.
- In game theory, RL is considered a bounded rational interpretation of how equilibrium may arise.
- One technique that has been developed from RL research in controls is *Policy Iteration* (PI)

Policy Iteration (PI)

- A class of two-step iteration algorithms: policy evaluation and policy improvement
 - <u>Evaluation</u>: Apply a control. Evaluate the benefit of that control.
 - Improvement: Improve the control policy.
- In control theory, PI algorithms amount to:
 - Learning the solution to a non-linear Lyapunov equation
 - Updating the policy by minimizing a Hamiltonian function

Offline PI Algorithm

- To solve the multi-agent game in a distributed way, the value functions must be parameterized.
- However, in our case, it is not clear what parametric form the value should take in the Hamiltonian.
- The value function needs to be in terms of local variables in order to use a local solution procedure

Offline PI Algorithm (cont)

Step 0: Start with stabilizing initial policies

$$u_{1}^{0}(x),...,u_{N}^{0}(x)$$

• Step 1: Given the *N*-tuple of policies, solve for the costs V_1^k, V_2^k, V_N^k

$$0 = \delta_i^T Q_{ii} \delta_i + u_i^T R_{ii} u_i + \sum_{j \in N_i} u_j^T R_{ij} u_j + \left(\frac{\partial V_i^k}{\partial \delta_i}\right)^T \left(A \delta_i + (d_i + g_i) B_i u_i - \sum_{j \in N_i} e_{ij} B_j u_j\right)$$

$$V^k_{i}(0) = 0 \qquad i \in N$$

Offline PI Algorithm (cont)

Step 2: Update the N-tuple control policies by trying to minimize the Hamiltonian:

$$u_i^{k+1}(x) = -\frac{1}{2}(d_i + g_i)R_{ii}^{-1}B_i^T \frac{\partial V_i^k}{\partial \delta_i} \qquad i \in N$$

Step 3: Increment k and repeat to Step 1 until convergence

Online Solution using Neural Nets

- Online solution uses an Actor-Critic method
 - Actor: selects the policy of the agent
 - Critic: criticizes the policy of the actor
- The output of the Critic drives the learning for both the Actor and Critic
- In this solution, Actors and Critics are neural networks (NNs)
 - Approximate value functions and their gradients
 - Use proper approximator structures

Value Function Approximator (VFA)

Assumption: For each admissible policy, the non-linear Lyapunov equations have smooth solutions

$$V_i(\overline{\delta_i}) \ge 0, \quad \overline{\delta_i} = \begin{bmatrix} \delta_i & \delta_{-i} \end{bmatrix}$$

Critic NN

$$\hat{V_i}(\overline{\delta_i}) = \hat{W_i}^T \phi_i(\overline{\delta_i})$$

Actor NN

$$\hat{u}_{i+N} = -\frac{1}{2}(d_i + g_i)R_{ii}^{-1}B_i^T \nabla \phi_i^T \hat{W}_{i+N}$$

Online Cooperative Games

Update Critic: learn the value

$$\begin{split} \dot{\hat{W}_{i}} &= -a_{i} \frac{\sigma_{i+N}}{(\sigma_{i+N}^{T} \sigma_{i+N} + 1)^{2}} \left[\sigma_{i+N}^{T} \hat{W}_{i} + \delta_{i}^{T} Q_{ii} \delta_{i} + \frac{1}{4} \hat{W}_{i+N}^{T} \overline{D}_{i} \hat{W}_{i+N} \right. \\ &+ \frac{1}{4} \sum_{j \in N_{i}} (d_{j} + g_{j})^{2} \hat{W}_{j+N}^{T} \nabla \varphi_{j} B_{j} R_{jj}^{-T} R_{ij} R_{jj}^{-1} B_{j}^{T} \nabla \varphi_{j}^{T} \hat{W}_{j+N} \right] \end{split}$$

Update Actor: learn the control policy

$$\begin{split} \dot{\hat{W}}_{i+N} &= -\alpha_{i+N} \{ (F_{i+1} \hat{W}_{i+N} - F_{i} \overline{\sigma}_{i+N}^{T} \hat{W}_{i}) - \frac{1}{4} \overline{D}_{i} \hat{W}_{i+N} \frac{\overline{\sigma}_{i+N}^{T}}{m_{si}} \hat{W}_{i} \\ &- \frac{1}{4} \hat{W}_{i+N}^{T} \sum_{\substack{j \in N_{i} \\ j \neq i}} (d_{j} + g_{j})^{2} \hat{W}_{j} \frac{\overline{\sigma}_{i+N}^{T}}{m_{si+N}} \nabla \varphi_{j} B_{j} R_{jj}^{-T} R_{ij} R_{jj}^{-1} B_{j}^{T} \nabla \varphi_{j}^{T} \end{split}$$

Some Remarks for Online Solution

- We have provided the base for tuning the actor/critic network of N agents at the same time, meaning that teams can learn online in real time.
- Persistence of excitation is need for the proper identification of the value functions by the Critic NN
- Nonstandard tuning algorithms are required to guarantee stability for the Actor NN
- NN usage suggest starting with random, non-zero control weights

Simulation

- Node 2 can receive orders from Node 1
- Node 2 does not have a transmitter strong enough to acknowledge the order directly.
- Thus Node 2 must use a router (Node 3), which under a security protocol, cannot acknowledge Node 2 directly.

Simulation Results

Node Dynamics

$$\dot{x}_1 = \begin{bmatrix} -1 & -2 \\ 1 & -4 \end{bmatrix} x_1 + \begin{bmatrix} 2 \\ -1 \end{bmatrix} u_1 \quad \dot{x}_2 = \begin{bmatrix} -1 & -2 \\ 1 & -4 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ -3 \end{bmatrix} u_2 \quad \dot{x}_3 = \begin{bmatrix} -1 & -2 \\ 1 & -4 \end{bmatrix} x_3 + \begin{bmatrix} 2 \\ 0 \end{bmatrix} u_3$$

Select Q_{ii}, R_{ii}, R_{ij} as identity matrices. Results:

Summary

- Posed the Synchronization Control Problem
- Derived the distributed Hamilton-Jacobi equation in terms of local value functions
- Proposed distributed solutions to the Multi-Agent Game
 - Offline Policy Iteration Algorithm
 - Online Solution using Actor/Critic NNs

Future Work

- Develop more simulations using more agents in time-varying graphs
- Extend the results of this research to graphs with a spanning tree (i.e. not necessarily strongly connected)
- Incorporate concepts of trust into cooperative multi-agent systems

Questions?

Kyriakos G. Vamvoudakis kyriakos@arri.uta.edu

Dariusz G. Mikulski dgmikuls@oakland.edu, dariusz.mikulski@us.army.mil

Dr. Greg R. Hudas greg.hudas@us.army.mil

Dr. Frank L. Lewis lewis@uta.edu

Dr. Edward Y. Gu guy@oakland.edu

